
Ž .JOURNAL OF ALGORITHMS 26, 188]208 1998
ARTICLE NO. AL970897

Constructing Computer Virus Phylogenies

Leslie Ann Goldberg
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There has been much recent algorithmic work on the problem of reconstructing
the evolutionary history of biological species. Computer virus specialists are inter-
ested in finding the evolutionary history of computer viruses}a virus is often
written using code fragments from one or more other viruses, which are its
immediate ancestors. A phylogeny for a collection of computer viruses is a directed
acyclic graph whose nodes are the viruses and whose edges map ancestors to
descendants and satisfy the property that each code fragment is ‘‘invented’’ only
once. To provide a simple explanation for the data, we consider the problem of
constructing such a phylogeny with a minimum number of edges. This optimization
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problem is NP-hard, and we present positive and negative results for associated
approximation problems. When tree solutions exist, they can be constructed and
randomly sampled in polynomial time. Q 1998 Academic Press

1. INTRODUCTION

There are now several thousand different computer viruses in existence,
with new ones being written at a rate of 3 to 4 per day. Most of these are
based upon previous ones: someone copies and modifies a virus, or creates
a new virus with subroutines borrowed from one or more ancestors.

For most purposes, a computer virus can be regarded as a fixed string of
bytes, each byte consisting of eight bits. If one virus is based on another,
long substrings of the ancestor, say 20 bytes or more, will appear in the
descendant. Using probability models similar to those employed in speech
recognition it is possible to estimate the probability that a given byte string

w xoccurs in several viruses by chance 15 ; if the probability is low but the
string does occur in several viruses then we conclude that it was written for
one virus, and it was copied into the others.

We wish to infer an evolutionary or phylogenetic history for a set of
computer viruses. As most phylogenetic literature to date has been based
upon biological evolution, we adopt that terminology. Thus, the viruses in

� 4the input set SS s s , . . . , s are called species. The species are defined by1 n
� 4a set of binary characters CC s c , . . . , c . A binary character is a func-1 k

� 4 Žtion c: SS ª 0, 1 . In general, the range of a character can be arbitrary,
but the presence or absence of byte strings can be modeled with binary

. Ž .characters. Each character c corresponds to a byte string, with c s s 1 if
Ž . Ž .the string occurs in species s and c s s 0, otherwise. If c s s 1, we say

that species s has or contains character c. In analogy with terminology
from the logic synthesis area of computer circuit design, we define the
on-set S of a chracter c to be the set of all species on which its value is 1:c

� < Ž . 4 < <S s s g SS c s s 1 . A character c is trivial if S F 1. A trivial char-c c
acter can be ignored because it imposes no constraints on possible solu-
tions.

We assume that the input species are all related: that the bipartite graph
joining characters to species that have them is connected. Otherwise, the
connected components can be considered independently.

We also assume that each code fragment is invented only once. For
sufficiently long fragments this is justified by differences in programming
style, the many possible orderings of unconstrained events, etc. We model
the evolution of a set of viral species with a directed graph in which an

Žedge s ª s indicates that species s is an ancestor of species s i.e., si j i j j
Ž . .inherited some character s from s .i
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DEFINITION 1. A phyloDAG for input species SS and characters CC is a
Ž .directed acyclic graph DAG with node set SS . For each character c g CC,

the subgraph induced by on-set S is connected, in the sense that from ac
single species a g S , which we call the archetype, there is a directedc c
path, within S , to every other s g S .c c

The phyloDAG model allows the possibility that a species may be
derived from several ancestors rather than from a single ancestor. We will
explain the motivation behind this new degree of freedom right after some
brief comments on the mathematics of the model.

Ž .A phyloDAG exists for any inputs SS , CC : for any chronology ascribed
Ž .to the species i.e., any total ordering of the species set , the directed graph

with edges from each species to all later species is a phyloDAG. However,
every pair of species is related by an edge in this graph. Because most virus
species presumably have few ancestors, we seek a minimum phyloDAG,
one with a minimum number of directed edges.

We assume that the input is given in the following compact format: for
each species s g S, we are given a list of the characters c for which
Ž .c s s 1.

Ž . < <DEFINITION 2. The input length l s l SS , CC s Ý S . The size iscg C c
< < < <n s SS . The number of characters is k s C .

Our approach to the evolution problem corresponds to a so-called
restricted model of evolution: one in which we are not allowed to introduce
hypothetical species outside of the input set. This model is well suited to
computer viruses, where because of good worldwide communications,
sharing of data between antivirus organizations, and the brief history
involved, there are likely to be very few gaps in our viral database}a
situation quite different from that in biology. Previous work on restricted
models of evolution will be discussed in Section 1.4. For our model, if
additional species could be introduced into a phyloDAG, there would
always be a trivial sparse phyloDAG: a star graph with the center an added

Ž .species s such that c s s 1 for c g CC.

1.1. Problem Motï ation

w xSorkin’s study of computer virus evolution 18 motivated our study of
the phyloDAG model. There are about 6000 computer virus species in
existence, of which many are simple modifications of predecessors. The
Jerusalem, Vienna, and Blackjack virus families, for instance, each contain
from scores to hundreds of related species. The author of a computer virus

Ž .can equally well incorporate computer code instructions from several
existing viruses, which is how multiple ancestry arises. Experts disagree as
to the frequency with which this occurs, and one of our eventual aims is to
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Žresolve this issue. Another form of multiple ancestry is well established,
but not addressed here. It comes from virus ‘‘toolkits’’: collections of

.mix-and-match software components from which viruses can be assembled.
The evolutionary classification of computer viruses can be helpful in

several ways. First, a taxonomy provides a natural organization for the
sizeable libraries of computer viruses that antivirus organizations must
maintain. Second, new viruses must be analyzed to tailor countermeasures,
in a process that can be partly but not completely automated. If a new
virus is related to one that was previously analyzed, the analysis may be
simplified.

The most practical application of evolutionary information may be in
increasing the efficiency of virus scanners. In a slightly simplified mathe-
matical view, each of the 6000 computer virus species is represented as a
byte string, typically 2000 bytes long. When antivirus programs ‘‘scan’’ for

Ž .infected files and antivirus programs do more than just this they use a
‘‘signature’’ of about 20 bytes to stand in for each virus: the signature must
always occur in the corresponding virus, and must never occur in legiti-
mate computer code. If one signature can be used for several viruses,

Ž .savings in space more than time can be achieved: the scanner requires
only a minimum-sized set of signatures which together ‘‘cover’’ all the
computer virus species.

In fact, the characters we will use to form a basis for computer virus
phylogenies are such shared signatures. They are defined as, say, all strings
of 20 bytes or more that occur in at least 2 viruses but in no legitimate
programs. They can be found, using linear space and time, by straightfor-

w xward application of suffix trees 7 . All viral and legitimate strings are
concatenated together, separated by a special character, and a suffix tree is
constructed. Its leaves represent all suffixes of the input string, and its
internal nodes}viewed as paths from root partway to leaf}denote pre-
fixes of suffixes, which is to say substrings of the input string. Depth-first
search can be used to propagate, from leaves to root, the number of times
each substring appears, or in fact the number of times it appears in viruses

Ž .and separately in legitimate strings.

1.2. Biological Application

Beyond the computer virus realm for which it was conceived, the
phyloDAG is also a plausible model for evolution of bacterial populations.
Bacteria reproduces through simple cell division. A single cell divides into
two daughter cells which each receive an exact copy of the parent cell’s

Ž .genetic information other than mutations that occur in transcription .
However, there are at least three known methods whereby bacteria of
different populations can exchange genetic information: transformation,

w xtransduction, and conjugation 13 .
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Ž .In transformation, a bacterium transports exogenous outside the cell
DNA into the cell, where it can become incorporated into the bacterium’s
DNA. The exogenous DNA can come from another bacterium that has

Ž .lysed broken apart and released its DNA into the medium. Only certain
types of bacteria can do this and only under certain circumstances; some
bacteria only bring in DNA that is quite similar to their own, while others
will bring in any DNA, but will incorporate it only if it is suitably similar.

Transduction involves the transfer of genes from one bacterium to
Ž .another via a bacteriophage a virus that infects bacteria . Normally a virus

infects a cell by binding to the cell and injecting its DNA. The virus then
takes over the cell and forces it to make many more viruses. The infected

Ž .cell then lyses breaks apart , releasing the new virus particles. There are
two mechanisms whereby viruses transmit genetic information. The first is
generalized transduction: sometimes when the bacterial cell is producing
new viruses, the viral package is filled with DNA from the host bacterium
rather than the viral DNA. The process is random and so any piece of
DNA can be packaged this way. When this ‘‘virus’’ is released, it can
‘‘infect’’ a cell by injecting its contents, but these contents are just bacterial
DNA. This DNA will not kill the cell, and can become incorporated into
the new host’s DNA. The second mechanism is specialized transduction via
lysogenic viruses. These viruses, upon infecting a bacterium, insert their
DNA into the host DNA at a particular spot and coexist. When given the
proper stimuli, the viral DNA is excised from the host DNA to carry out
the normal infection cycle. Sometimes this excision is not done correctly,
and pieces of the host DNA are excised as well. They are then packaged
into the new viruses and transmitted to new hosts. Only genes near the
attachment sites are transmitted this way, but the transmission is very
efficient.

Conjugation involves the direct contact of two bacteria and the transmis-
Ž . Ž .sion of plasmids from one donor to the other recipient . Plasmids are

rings of DNA that are much smaller than the bacterial genome. They exist
in the bacterial cell independently from the genome and are capable of
replicating when the cell divides. Conjugative plasmids encode the pro-
teins, etc., necessary for conjugation, thus engineering their own transmis-
sion. Conjugative plasmids can bring other genes with them into new cells,
and can also allow the transmission of arbitrary plasmids. These plasmids
can become incorporated into the cell DNA; for example, the genetic
material of E. Coli’s F plasmid, which allows sexual conjugation, is
incorporated into the host genome at a rate of 10y5 per cell division. This
is an important mechanism, because it is the primary way bacteria transfer
drug resistance.

Because these mechanisms allow arbitrary exchange of genes from one
population to another, bacterial evolution does not seem to follow the



CONSTRUCTING COMPUTER VIRUS PHYLOGENIES 193

‘‘divergent evolution’’ implied by a tree: populations can evolve from
multiple sources. Bacteria reproduce very rapidly and some region of their
genome mutate frequently. Therefore, characters based on single-site
mutations may not have a single archetype. However, for genes with
sufficiently large mutation differences from any genes seen previously, it is
reasonable to assume that as a rule there is unique evolution, and
therefore a unique archetype.

1.3. Paper Organization and Results

We will show in Section 3.3 that the minimum phyloDAG problem is
‘‘hard’’: in polynomial time, it cannot be solved exactly unless P s NP, nor
can it approximated to within better than a logarithmic factor unless

Ž OŽ log log n..NP : DTIME n . In fact, we know of no way to approximate
minimum phyloDAG to within a logarithmic factor: Section 3.3 shows that

.various natural greedy strategies including randomized ones do not even
approximate within a factor of cn.

Because of the difficulty of the phyloDAG problem, we consider two
variants. In the first variant, we require that each species have just one

Žancestor, so that the phyloDAG is an arborescence a tree with edges
.directed away from a root . If the arborescence’s vertices are labeled with

the values of one character, the postulate that no character is ‘‘invented’’
twice corresponds to an assertion that there is at most one directed edge
labeled 0 ª 1. Thus the sequence of labels along any source-to-leaf path is
described by the regular expression 0*1*0*, that is, zero or more 0s,
followed by zero or more 1s, and finally zero or more 0s again. In Section 2
we define a 0]1]0 phylogeny to be an arborescent phyloDAG’s underlying
undirected tree. Species SS and characters CC may be consistent with zero,
one, or multiple 0]1]0 phylogenies. We give two polynomial-time algo-
rithms to randomly sample 0]1]0 phylogenies if any exist.

Ž .The first atomic-set algorithm Section 2.1 computes a concise data
structure that represents all 0]1]0 phylogenies for the input data and can

Ž .be used to select a phylogeny uniformly at random in time O nl . When no
solution exists the algorithm returns a witness set: a concise indication of
why there can be no phylogenetic tree.

Ž .The second minimum spanning tree algorithm Section 2.2 character-
izes a 0]1]0 phylogeny of the input species set as a minimum spanning

Ž .tree MST of a particular undirected edge-weighted graph. With it, 0]1]0
Ž 2 .phylogenies can be constructed in deterministic time O ln q n log n or

Ž . Ž .with high probability in randomized time O ln , and sampled uniformly
Ž Ž .. Ž .at random in time O ln q M n , where M n is the time needed to

multiply two n = n matrices. It does not produce a concise witness when
there is no 0]1]0 phylogeny.
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The second variant of phyloDAG is simply its undirected analogue. A
phylograph for species SS and characters CC is an undirected graph with
vertex set SS , with the property that the subgraph induced by the on-set of
each character c g CC is connected. The Minimum Phylograph problem is
to find a phylograph with the minimum number of edges. Theorem 17
shows that it is hard to approximate Minimum Phylograph within a factor

1less than ln l, while Theorem 18 shows that approximating it within a4

factor of ln l is easy.
The model of computation used in this paper is the uniform-cost

random-access machine.

1.4. Related Work

Previous work in phylogeny focused on constructing phylogenetic trees.
However, the problem of modeling computer virus evolution is more suited
to phylographs and phyloDAGs, in which undirected cycles may arise. As
far as we know, ours is the first phylogenetic work that allows cycles.

There is substantial literature on character-based phylogenies where
each subgraph induced by all species sharing a state for a character is
required to be connected. This problem is called the perfect phylogeny

Žproblem, and is NP-complete for the ‘‘unrestricted’’ case where putative
. w xspecies may be added with general characters 3, 19 . For the unrestricted

Ž . w xcase with binary characters Gusfield gives an elegant O nk algorithm 12 ,
w xand for the restricted case with general characters Goldberg et al. 11 give

Žan algorithm analogous to the MST algorithm of Section 2.2. To clarify
the relationship between perfect phylogeny and our problem, note that the
restricted perfect phylogeny problem with binary characters could be

.called the ‘‘0]1 phylogeny problem.’’
Our 0]1]0 phylogeny problem is similar to a restricted version of the

w xgeneral character compatibility problem of Benham et al. 2 . There a
Ž . � 4character c maps each species s to a subset c s : 0, 1, 2 rather than to a

single value; the lea¨es of the tree are the species SS ; for each c and s a
Ž .single value from c s is chosen as a label; and the goal is to find a rooted

perfect phylogeny in which the sequence of labels along any root-to-leaf
w xpath is of the form 0 ª 1 ª 2. The problem is NP-hard 2 .

w xA preliminary version of this article appeared as 10 .

2. COMPUTING A 0]1]0 PHYLOGENY

The case in which each species has only one ancestor is of special
interest, and corresponds to cases in which the phyloDAG is an arbores-
cence}a tree with all edges directed away from some root. There is a



CONSTRUCTING COMPUTER VIRUS PHYLOGENIES 195

straightforward n:1 correspondence between arborescences and undi-
rected trees: the undirected graph underlying an arborescence is a tree;
and each of the n possible rootings of a tree is an arborescence.1

Therefore we concentrate on undirected 0]1]0 phylogenies:

Ž .DEFINITION 3. An undirected 0]1]0 phylogeny, or phylogenetic tree,
is a tree T on species SS with characters CC such that each on-set Sc
induces a subtree of T.

The requirement that each on-set induces a subtree corresponds to the
requirement that each code fragment is invented only once. We allow the
possibility that the code fragment may be dropped when one virus is used
to create a new virus. Thus, we are interested in 0]1]0 phylogenies and
not in perfect phylogenies.

If T is a phyloDAG whose underlying graph is a tree T , then T is a
0]1]0 phylogeny as previously defined: as each on-set S was connected inc
T, it is connected in T. Also, if T is a 0]1]0 phylogeny, any arborescence
based on T is a phyloDAG: the archetype of any character c is the species
in S closest to the root. in this section, we will show how to generatec
0]1]0 phylogenies, and how to generate them uniformly at random. Given
a uniformly random phylogenetic tree, choosing a root uniformly at ran-
dom generates a uniformly random arborescent phyloDAG.

Because an arborescence can be rooted anywhere, a 0]1]0 phylogeny
alone does not determine an evolutionary chronology, but it can be useful
in combination with external information. For example, if the first species’
identity is known, the rest of the evolutionary history follows.

2.1. The Atomic-Set Algorithm for Computing 0]1]0 Phylogenies

As described in the Introduction, our atomic-set algorithm produces a
data structure, an AS-tree, which concisely represents all 0]1]0 phyloge-
nies for species SS and characters CC, and can be used to generate an
arbitrary solution or a solution chosen uniformly at random.

Generalizing the definition of the on-set of a character, define the
on-set of a collection of characters to be the species having all those
characters: S s F S .C cg C c

ˆ Ž .DEFINITION 4. Let C : CC be a maximal not necessarily maximum set
< <of characters for which S G 2. Then A s S is an atomic set withˆ ˆC C

ˆdefining characters C.

1 There exist phyloDAGs whose underlying graphs are trees but which are not arbores-
Ž . Ž . Ž . Ž . Ž . Ž .cences. An example, for species with characters a , ab , and b , is a ª ab ¤ b . But

because such phyloDAGs simply multiple ancestors for some species, they are not especially
interesting.
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ŽLEMMA 5. For any atomic set A and character c, either S = A c is ac
. < < Ždefining character , or S l A s 1 c is a nondefining character owned byc

. Ž .the sole species s g S l A , or S l A s B c is an avoiding character .c c

< <Proof. The only logical possibility missing is that S l A G 2 butc
S l A / A, which would contradict the maximality of A’s set of definingc
characters.

ˆŽ . ŽAn atomic set can be constructed in time O kn : start with C s B so
. < <S s SS , sweep through all characters c g CC in turn, reject c if S l Sˆ ˆC C c

ˆ ˆ � 4 Ž .F 1, but otherwise add c to the defining set, so C [ C j c . An O l -time
implementation of this algorithm is described in the Appendix.

LEMMA 6. Suppose all species in SS are connected, i.e., the bipartite graph
joining characters to species that ha¨e them is connected. Then if s , s g SS1 2

Ž .ha¨e no characters in common, no phylogeny contains the edge s , s .1 2

Ž .Proof. Suppose a phylogenetic tree T contained s , s , and delete1 2
Ž .s , s to create a forest T 9, consisting of two trees. For any character c1 2
and any s, s9 g S , T has a path s, . . . , s9 within S . The path does notc c

Ž .include the edge s , s , because not both s and s can be in S , so T 91 2 1 2 c
contains the same path. Thus in T 9 there is a path from any species hav-
ing character c to any other. Given the connectedness of the species]
character graph, a series of such paths joins any species in SS to any other,
contradicting the fact that T 9 is not a connected graph.

LEMMA 7. If A is an atomic set, then in any 0]1]0 phylogeny, A’s
induced subgraph is a subtree.

Proof. In a 0]1]0 phylogenetic tree T , the on-set of any character
c g CC induces a connected subgraph, therefore a subtree. A is the
intersection of the subtrees corresponding to A’s defining characters, and
the intersection of subtrees is itself a subtree.

LEMMA 8. For any phylogeny T and atomic set A, if the subtree T isA
replaced by any other tree T X on the set A, the resultant o¨erall tree T 9 is alsoA
a phylogeny.

Ž .Proof. For any character c and species s, s9 g S , consider the uniquec
path s, . . . , s9 in T. If S l A s B, the path never enters A, so it isc

Ž . < <unaffected i.e., the identical path exists in T 9 . If S l A s 1, the pathc
touches at most one vertex in A, hence no edges within A, and is

Ž .unaffected. Otherwise by Lemma 5 S = A, and if the path through Tc
Ž .included any subpaths through T in fact there can be at most one , thoseA

X Žsections could be replaced by subpaths through T and thus still withinA
.S . So connectedness of all characters in T implies the same for T 9, andc

T 9 is a phylogeny.
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LEMMA 9. For any phylogeny T and atomic set A, if A is collapsed}
replaced by a single species ‘‘a’’ ha¨ing all defining and nondefining characters

Ž .of A but not its a¨oiding characters , and the subtree T is contracted to theA
Žsingle species a, then the resultant o¨erall tree T 9 is a phylogeny for SS 9 s S

. � 4R A j a .

Proof. Same as the previous one.

Ž .LEMMA 10. If SS , CC has an atomic set A, with species s , s g A owning1 2
nondefining characters c , c respectï ely, and if S l S / B, then there is1 2 c c1 2

no 0]1]0 phylogeny for SS .

Proof. Suppose there is a phylogeny T for SS . Root T at any s g S3 c1

l S , and let s be the lowest common ancestor of s and s . Then thec x 1 22
Ž .path all paths in a tree are unique from s to s passes through s ; the1 2 x

Ž .path from s to s passes through s because s is an ancestor of s ; and3 1 x x 1
Ž .the path from s to s passes through s because s is an ancestor of s .3 2 x x 2

By Lemma 7, A induces a subtree, so s , s g A implies that the s }s1 2 1 2
path is contained in A, and in particular s g A. Similarly, s , s g Sx 1 3 c1

implies s g S , and s , s g S implies s g S . Therefore s g A l Sx c 2 3 c x c x c1 2 2 1

l S . But c and c are nondefining characters with distinct owners, soc 1 22

A l S l S s B, a contradiction.c c1 2

If the hypotheses of Lemma 10 are satisfied, we say that the atomic set
A, characters c , c , and species s , s provide a witness attesting to the1 2 1 2
nonexistence of any 0]1]0 phylogenetic tree.

LEMMA 11. Let A be an atomic set, and suppose that no s , s , c , c1 2 1 2
satisfy the conditions of Lemma 10. As before, ‘‘collapse’’ A to the single

Žspecies a ha¨ing all defining and nondefining characters of A. If SS 9 s SS R
. � 4A j a has a phylogeny, so does SS .

Proof. Let T 9 be a phylogeny for SS 9. Delete a and its incident edges,
and replace them with the st A and any tree on A. Additionally, replace

Ž .each edge s, a with a single edge as follows.
Ž . ŽBy Lemma 6, s and a must share some character s , which because a

.has them must be defining or nondefining characters of A. If s and a
share any nondefining characters, those characters must have a single

Žowner s9 or else A, these characters, and their owners are a negative
. Ž .witness , in which case add the edge s, s9 . Otherwise, s and a only share

Ž .defining characters of A, in which case add any edge s, s9 with s9 g A.
Ž . Ž .Replacement of each edge s, a with an edge s, s9 , s9 g A, means that

the tree components created by a’s deletion are all connected to the tree
on A, creating a single tree T. Using arguments similar to those in Lem-
ma 8, all characters induce connected components in T as they did in T 9.
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In fact, the constructive nature of the proof of Lemma 11 immediately
suggests the atomic-set algorithm. Starting from SS [ SS , repeatedly, find0
an atomic set A and check for a witness as in Lemma 10. If one is found,i
terminate negatively. Otherwise, collapse A to a single new species a ,i i

Ž . � 4and redefine the species set to be SS [ SS _ A j a . Because eachi iy1 i i
atomic set contains at least two species, this reduces the number of
species, and needs to be performed at most n y 1 times.

We construct the AS-tree during this contraction phase. The leaves of
the AS-tree are the species in SS , and all elements of any set A have a asi i
their parent. Equivalently, the final a is the root of the AS-tree, and eachi
a has all species in A as children. This tree concisely represents allj j
possible phylogenies.

Now, starting at the root of the AS-tree, we expand any node a whosei
parent is already expanded using the method suggested by the proof of
Lemma 11: Replace a with A and form any tree T on A . For each oldi i i i

Ž .edge s, a , if s has a nondefining character c of A , add edgei i
Ž Ž ..s, owner c ; otherwise s must have only defining characters, in whichA i

Ž .case add any edge s, s9 , s9 g A .i

THEOREM 12. The preceding algorithm produces a phylogeny for SS , CC if
one exists, and otherwise produces a negatï e witness. The AS-tree that it
constructs represents all possible 0]1]0 phylogenies. Thus, if the algorithm is
implemented to choose trees T uniformly at random, and to choose s9 g Ai i

Ž .uniformly at random for defining-character edges s, s9 ,then it produces a
uniformly random undirected 0]1]0 phylogeny.

Proof. The first assertion follows directly from the preceding sequence
of lemmas. If we detect a negative witness, we correctly terminate nega-
tively by Lemma 10 coupled with Lemma 9. Otherwise, by Lemmas 9 and
11, we can collapse the atomic set, solve the problem on the new set, and
‘‘expand’’ the collapsed set to a 0]1]0 phylogeny. Lemmas 8 and 9 and the
proof of Lemma 11 show that all 0]1]0 phylogenies can be produced from
the AS-tree obtained by the algorithm. the choices made in the expansion
phase are independent and lead to different phylogenies. The uniform
generation of phylogenies follows from this one-to-one correspondence
between phylogenies, and choices in the algorithm.

Note that the order in which atomic sets are chosen by the algorithm
affects the final AS-tree that is obtained, but that any AS-tree obtained by
the algorithm is a concise representation of all possible 0]1]0 phyloge-
nies. Furthermore, any AS tree obtained by the algorithm can be used to
randomly sample the 0]1]0 phylogenies of the input.
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Ž .The atomic-set algorithm produces an AS-tree in time O nl : in each of
Ž .the O n collapsing iterations, we find an atomic set, check for a witness,

Ž . Žand collapse the set, each such operation taking time O l . See the
.Appendix.

Ž . Ž .The expansion can e completed in time O nl . There are O n expan-
sions. To expand node a , we can produce a random tree on the set A ini i

Ž < <.time O A , because a labeled tree on r nodes can be selected uniformlyi
Ž . Ž w x.at random in time O r . See, for example, 16 . If we store pointers to

owners of nondefining characters when constructing the AS-tree, we can
Ž .connect this tree to its neighbors in time O l .

2.2. The Minimum Spanning Tree Algorithm

In this section we give a second algorithm for computing 0]1]0 phyloge-
nies. It is very simple, and it is based on the observation that 0]1]0
phylogenies for species SS and characters CC correspond to minimum-weight

Ž .spanning trees MSTs of a particular undirected edge-weighted graph
Ž . Ž w xG SS , CC . This observation was also used in 11 to obtain an algorithm

.finding restricted perfect phylogenies.
Ž .The graph G SS , CC is a complete graph on SS , with edge weights

Ž . <� < Ž . Ž . 4 < Ž .w s , s s k y c g CC c s s c s s 1 . It can be constructed in O ln1 2 1 2
time.

Ž .THEOREM 13. 0]1]0 phylogenies for SS , CC are spanning trees of
Ž . Ž .G SS , CC with weight nk y l. Furthermore, G SS , CC has no spanning trees of

smaller weight.

Ž .Proof. Every spanning tree of G S has weight at least nk y l, because
the contribution of each character c to the total weight is at least
Ž . Ž < < . Ž .n y 1 y S y 1 . Spanning trees of G S with weight nk y l corre-c

Ž w x.spond to trees in which each on-set S is connected see 11 .c
ŽBecause of this correspondence, phylogenies can be constructed or

. Žrandomly sampled by established algorithms for constructing or randomly
. w xsampling MSTs. Prim’s algorithm 17, 9 constructs an MST of G in

nŽ .O m log m time, where m is the number of edges in G, and m forž /2
Ž .G s G SS , CC . If a faster algorithm is required, Karger, Klein, and Tarjan’s

Ž .randomized algorithm constructs an MST, with high probability, in O m
w x Žtime 14 . Their model of computation is a unit-cost random-access

machine with the restriction that the only operation allowed on edge
weights are binary comparisons. See also the other algorithms discussed in
w x .14 .

Given an unweighted n-vertex graph, an algorithm of Colbourn, Myr-
w xvold, and Neufeld 5 selects a spanning tree uniformly at random in
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Ž Ž .. 2 Ž Ž . Ž 2.376.O M n time. Here M n s O n is the time needed to multiply
w x . w xtwo n = n matrices 6 . Colbourn and Jerrum 4 note that the algorithm

can be used to select an MST of a weighted graph G uniformly at random
Ž Ž ..in O M n time: construct a random spanning tree on each connected

component of the subgraph of G induced by the edges of minimum
weight, put the spanning trees’ edges into the final solution, contract the
spanning trees, and repeat.

Compared with the atomic-set algorithm, the MST approach has the
advantage of using an unusually widely understood and simple paradigm, a
benefit echoed in the availability and efficiency of computer programs.
However, it does not supply a structural representation of all possible
phylogenies, nor a concise witness when no phylogeny exists.

3. PHYLOGRAPHS AND PHYLODAGS

Having considered the problem of constructing phylogenetic trees, we
now turn to phylogenies that are not trees. In particular, we consider the
phylograph and phyloDAG problems that were defined in the Introduc-
tion. In Section 3.1 we prove that it is hard to approximate the optimal
phylograph within better than a logarithmic factor, and in Section 3.2 that
the natural greedy algorithm gives an approximation within such a factor.
In Section 3.3 we show both that it is hard to approximate the optimal
phyloDAG within better than a logarithmic factor, and that in this case the
natural greedy algorithm can perform very badly, even on average.

3.1. Hardness of Approximation of Phylograph

Hardness results for Minimum Phylograph follow from those known for
Minimum Set Cover and problems equivalent to it in terms of approxima-
tion ratio, notably Minimum Dominating Set.

Ž .DEFINITION 14. The neighborhood of a vertex ¨ of a graph G s V, E
Ž . � 4 � Ž . 4is the set N ¨ s ¨ j w: ¨ , w g E . A dominating set of G is a set of

Ž .vertices D : V whose neighborhoods cover the graph: D N d s V.d g D

It is well known and it is easily proved that the natural greedy algorithm
Ž .for Minimum Dominating Set or the related problems is a ln n approxi-

Ž .mation algorithm: for a graph G s V, E , the dominating set produced by

2 w xAnother randomized algorithm, due to Wilson 20 , as an expected running time equal to
Ž .the mean hitting time of the graph; this is often smaller than M n , but can be larger.
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< <the greedy algorithm is at most ln V times larger than the minimum
w xdomating set. In 8 , Feige shows that this is a threshold:

Ž .THEOREM 15 Feige . Let c be a constant in the range 0 - c - 1. Unless
Ž OŽ log log n..NP : DTIME n , there is no polynomial-time algorithm that takes

< <as input a graph G and outputs a dominating set D of G such that D is
< <within a factor of c ln V of the minimum possible ¨alue.

Ž .Feige’s is the latest in and contains a good review of a sequence of
works on this problem. Another which is relevant here, because of its

w xweaker hypothesis, is that of Bellare et al. 1 :

Ž .THEOREM 16 Bellare, Goldwasser, Lund, and Russell . Unless P s NP,
there is no polynomial-time algorithm that approximates Minimum Dominat-
ing Set to within any constant factor.

From these results we can show that Minimum Phylograph cannot be
approximated to within any constant factor unless P s NP, and cannot be
approximated to better than a logarithmic factor unless NP :

Ž OŽ log log n..DTIME n .

THEOREM 17. Unless P s NP, for any constant c ) 0, there is no polyno-
mial-time algorithm that takes as input species SS and characters CC and

Ž . < <outputs a phylograph G s SS , E such that E is within a factor of c of the
minimum possible ¨alue.

Ž OŽ log log n..Similarly, for any c - 1r4, unless NP : DTIME n , there is no
polynomial-time algorithm approximating Minimum Phylograph within a fac-

Ž .tor c ln l where l is the input length defined earlier .

Proof. We use an approximation-preserving reduction from Minimum
Ž .Dominating Set to Minimum Phylograph. Given an input G s V, EG

< <with V s n , construct an instance P to Minimum Phylograph as follows:
The species set is SS s V j X where X is a set of n 3 ‘‘auxiliary vertices.’’

� 4 Ž2.For each pair of vertices ¨ , ¨ g V , define a character with on-set1 2
� 4¨ , ¨ . Thus any phylograph for P contains each edge in the complete1 2

Ž .graph on V. In addition, for each pair of vertices ¨ , x g V = X we define
� 4 Ž .a character with on-set x j N ¨ .

� .If P s SS , E is an optimal phylograph for P, and D is a minimum0 0 0
n< < < < < <dominating set for G, then E s q X D . To see this, observe thatž /0 02

the complete graph on V added to X = D is a phylograph for P, so0
n< < < < < <E F q X D . On the other hand, every phylograph for P has atž /0 02

n < <least edges connecting species in V and has at least D edges adjacentž / 02

to each x g X.
Suppose we had an algorithm A that could produce a phylograph

Ž . < < Ž . < <SS , E for P with E F c ln l E edges. By the construction of P,A A 0
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some vertex x g X is connected to a dominating set D for G with
n< < < < < < Ž . < < < < < < < < < <D F E r X F c ln l E r X edges. Because E s q X D , wež /A 0 0 02

have

n < < < <q X D0ž /2
< <D F c ln l .Ž .

< <X

Ž < < 3 < < . < < Ž Ž .. Ž . < <Thus because X s n and D G 1 , D F c 1 q o 1 ln l D . Now0 0
Ž . < < < < < < Ž 5. < < Žnote that l s n n y 1 q 2n X q 2 E X s O n . Thus, D F 5c 1 qG

1Ž .. Ž . < <o 1 ln n D , which is contrary to Theorem 15 if c - , unless NP :0 5
1OŽ log log n. 2qe 3Ž . < <DTIME n . Using X s n instead of n gives the constant .4

Similarly, a constant-approximation algorithm is forbidden by Theo-
rem 16, unless P s NP.

3.2. Greedy Algorithm for Phylograph

There is a natural greedy algorithm for the Minimum Phylograph
problem. In a phylograph, every character’s induced subgraph consists of a
single connected component, so the greedy algorithm ‘‘grows’’ a solution
by iteratively adding an edge that maximally reduces the number of
connected components.

The same notation needed to define the algorithm more precisely can be
used in the proof of its quality. Given species SS and characters CC, and a
set of edges E : SS Ž2. define the ‘‘cost’’ of E to be

< <f E s components S y C ,Ž . Ž .Ý c
cgC

Ž .where components S denotes the number of connected components inc
Ž . Ž . < <the subgraph of SS , E induced by the on-set of c. Thus f B s Ý Scg C c

< < < < Ž . < <y C s l y C , and if E is a phylograph, f E s Ý 1 y C s 0.cg C
Ž . Ž . Ž � 4.For any edge set E and any edge e, let D e s f E y f E j e beE

the amount by which e decreases the cost f. The greedy algorithm begins
with each species an isolated vertex, and iteratively adds the edge which
maximally decreases the cost, until the cost is 0. In pseudocode:

Ž .Let i [ 0 and E 0 [ BG
Ž Ž ..While f E i ) 0 doG

begin
Let i [ i q 1

Ž .Let e be an edge maximizing D eE Ž iy1.G
Ž . Ž . � 4Let E i [ E i y 1 j eG G

end
Ž .Return the set E s E iG G
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THEOREM 18. Supppose that for species S and characters C, of total input
� Ž . Ž .4length l, the minimum phylograph e 1 , . . . , e r has cardinality r. Then the

< < Ž < <.greedy algorithm produces a phylograph E of size E F r ln l y C .G G

Proof. If we have any partial solution, adding in all r edges of a
minimum phylograph will certainly yield a phylograph. Because r more

Ž .edges are enough to complete the job, some edge one of these, even must
Ž .take care of at least 1rr th of the cost. If the initial cost was f B , and the

Ž .greedy algorithm reduces it by 1 y 1rr at each step, after r ln f B steps
the cost must be reduced below 1, and the algorithm must have termi-
nated.3

Ž . Ž .More formally, for any edge set E 0 define a series of sets E 0 : ???
Ž . Ž . Ž . � Ž . Ž .4 Ž .: E r , where E i s E 0 j e 1 , . . . , e i and the edges e i are those

Ž .of the minimum phylograph. Note that E r is a phylograph, because it
Žcontains the minimum phylograph. Because components with respect to

.any character only become more connected as i increases, for any e, if
Ž . Ž .i F j then D e G D e . Thus for any starting set E ,EŽ i. EŽ j. 0

r

r ? max D e G D e iŽ . Ž .Ž .ÝEŽ0. EŽ0.
Ž2.egSS is1

r

G D e iŽ .Ž .Ý EŽ iy1.
is1

r

s f E i y 1 y f E iŽ . Ž .Ž . Ž .Ý
is1

s f E 0 y f E rŽ . Ž .Ž . Ž .
s f E 0 .Ž .Ž .

Comparing the first and last quantities, we conclude that there always
Ž . Ž .exists an edge e for which D e G f E rr.EŽ0. 0

Therefore the greedy algorithm reduces the cost by a factor 1 y 1rr at
< < Ž < <.each step. Because the initial cost is l y C , the cost after r ln l y C
Ž . r lnŽ ly <C <.Ž < <.steps of the greedy algorithm is at most 1 y 1rr l y C F 1.

Ž < <.The greedy algorithm therefore terminates within r ln l y C steps, pro-
ducing a phylograph of the same size.

This complements the result of Theorem 17: Minimum Phylograph is
1apparently hard to approximate to better than a factor of ln l, but easy to4

Ž < <.approximate to a factor ln l y C F ln l. It would be of some interest to

3 The same approach will not work for phyloDAG. Because directed cycles are forbidden,
chosen edges constrain the addition of future ones, and even if there was a solution of size r
initially, there may not be once some edges are chosen suboptimally.
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1 Ž .derive better bounds on the constant c, - c F 1, for which c ln l -4

approximability is possible.

3.3. PhyloDAGs

We begin by observing that a phyloDAG cannot always be obtained by
directing the edges of a phylograph. Consider four species with s defined1

Ž . Ž . Ž . Ž .by characters b, c, d , s by a, c, d , s by a, b, d , and s by a, b, c .2 3 4
The cycle s , s , s , s , s is a 4-edge phylograph, but there is no way to1 2 3 4 1
direct the edges of the cycle to obtain a phyloDAG: any acyclic orientation
will create two archetypes for some character’s on-set.

We now prove the following theorem, which is analogous to Theorem
17.

THEOREM 19. Unless P s NP, for any constant c ) 0, there is no polyno-
mial-time algorithm that takes as input species SS and characters CC and

Ž . < <outputs a phyloDAG G s SS , E such that E is within a factor of c of the
minimum possible ¨alue.

1 OŽ log log n.Ž .Similarly, for any c - , unless NP : DTIME n , there is no4

polynomial-time algorithm approximating within a factor c ln l.

Proof. The proof uses the same reduction as the proof of Theorem 17.
Let E be the edge set in an optimal phyloDAG for P. We must show that0

n< < < < < <E s q X D . The direction that differs from the proof of Theo-ž /0 02

rem 17 is showing that given a dominating set D , we can construct a0
n < < < < ŽphyloDAG of size q X D . To do so, first construct a phylograph asž / 02

.in the proof of Theorem 17 . Then direct edges having both end points in
V according to a total order on the vertices in V, and direct all remaining
edges from vertices in V toward vertices in X. The resulting digraph has
no directed cycles and each character has a unique archetype. Therefore, it
is a phyloDAG. The rest of the proof is identical to that of Theorem 17.

As already noted, the natural greedy algorithm does not work well for
phyloDAGs: the phyloDAG problem seems to be more difficult because
the prohibition of cycles means that it is possible for the greedy algorithm
to add a ‘‘bad’’ edge which prevents other ‘‘good’’ edges from being added
later. In the remainder of this section, we give an example of a species set
for which various natural greedy approaches for constructing a phyloDAG

Ž . Ž .lead to an V n ratio between the size number of edges of the con-
structed phyloDAG and the size of the optimal phyloDAG. A randomized

Ž . Ž .strategy has an V n expected ratio and has a ratio of V nrlog n with
high probability.
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We construct a species set as follows. There are n species s , . . . , s , and1 n
two distinguished species s9 and s0. Now we add

}2n characters shared by s9 and s0;
}2 characters shared by s9 and s , for i s 1, . . . , ni
}1 character shared by s0, s , and s , for 1 F i, j F n, i / j.i j
Duplicating characters forces the order in which a greedy algorithm

connects species. We hide this duplication from an algorithm that checks
< <for it by adding a set S of dummy species, where S s log 4n . ThereŽ .d d

Ž .log 4 nu vare 2 G 4n distinct subsets of S . We add one such subset to eachd
4 Ž .of the 4n nonunique characters. An optimal solution has O n edges,

consisting of an edge from s9 to s0, edges from s9 and s0 to each of the s ,i
and edges from s9 to each species in S .d

A phyloDAG has exactly one archetype for each character. A greedy
algorithm begins with each species an isolated node, thus an archetype for
each character it contains. A natural edge to add in a greedy fashion is one

Ž .that maximally reduces the number of archetypes over all characters . Of
course, we may not introduce directed cycles.

There may be times where we can choose the direction of the edge to be
Ž .introduced for example at the first iteration and we show that the

algorithm performs badly for any of the following strategies:
}The direction is chosen arbitrarily.

Ž}The direction is chosen uniformly at random. The expected perfor-
mance of the algorithm is bad for this example, and the example can be

.modified so that the bad performance occurs with high probability.
}The edge is directed out from the node with the larger number of

Žcharacters. This is a natural way of breaking ties, because we expect
.ancestral nodes to have many characters.

A greedy algorithm starts by putting an edge between s9 adn s0, and an
Ž .edge between s9 or possibly s0 and each species in S . Then it addsd

edges between s9 and the s . If direction are chosen arbitrarily we mayi
assume that these edges are from s9 to s0, and from each of the s to s9.i
Hence it is now impossible to add edges from s0 to any of the s , becausei
they would create directed cycles. This means that in order to prevent
there being two archetypes for a character shared by s0, s , and s , speciesi j

ns must be connected to s by an edge. This results in edges.ž /i j 2

Now consider the variant where the direction of an edge is chosen
uniformly at random whenever it is equally good to direct it either way.

4 An algorithm may also check for domination, where s contains a subset of the charactersd
contained by s. We can remove the dominated species s from the instance and later directd
an edge from s to s in the phylogeny for the reduced set. To avoid this situation here, wed

� Ž . Ž .4add a character s i , s i q 1 for i s 1, . . . , 4n , which chains the dummies together.u vd d
This does not change the asymptotic size of the optimal solution.
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ŽWith high probability i.e., with complement probability that is exponen-
.tially small in n , there will be at least nr4 edges directed from the s s toi

Žs9. If the edge between s9 and s0 is directed the wrong way i.e., from s9 to
.s0 then these s nodes will have to be connected in a clique, resulting in ai

quadratic number of edges. If we now consider a species set consisting of
Ž . Ž .a log n copies of the species set as described for a positive constant a ,

Ž .we see that the optimal solution has Q n log n nodes and edges, and with
probability at least 1 y nya , at least one of those copies will have the edge

Ž 2 .between s9 and s0 directed the wrong way, resulting in Q n edges.
If edges are directed away from nodes with higher numbers of charac-

ters, then the algorithm can be forced to take the ‘‘wrong’’ direction for
the edges by adding dummy characters at the nodes from which we want
the edges to be directed.
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4. APPENDIX

Ž .4.1. An O l -time Algorithm to Compute an Atomic Set

We presume that each species is described by a sorted list of the
characters it contains. From this, construct a description of each character,
as a sorted list of the species containing it. This can be done in linear time:
loop through species i; loop through characters j on i; add species i to
character j’s list.

Now the basic algorithm is:

Ž .Let A [ SS 0th atomic set contains all species0
Ž .Let D [ B set of defining characters is initially empty

Loop through characters i, and consider the list S of species havingi
character i:
Ž . < <1 size [ A l Siy1 i
Ž .2 If size - 2 then A [ Ai iy1
Ž . � 43 If size G 2 then A [ A l S , and D [ D j ii iy1 i
Ž .4 next i

Ž .We now show how to compute the intersection size step 1 and the
Ž .intersection itself step 3 in linear time. This implementation gives a
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linear-time algorithm overall. Let all the set A be represented doubly, as
Žboth a sorted linked list, and as a binary array of length k with 1s for

.species present in A, 0s for species absent from A .
< <Computing the size of A l S can be done in time S : Over speciesi i

w xs g S , sum up the binary array elements A s . Thus all iterations of stepi
< <1, together, take time of order Ý S .i i

< < < <Computing A9 [ A l S can be done in time A q S : The orderedi i
list for A9 is constructed by stepping through the ordered lists for A and Si
in synchrony, advancing in the list with the smaller current value, and
augmenting the list for A9 when the lists for A and S have the samei
current value. The binary array for A9 is formed by modifying that of A,
which is no longer needed for any other purpose; the list for A is used to
set all 1s in the array back to 0, and then the list for A9 is used to set 1s
appropriately.

Thus over values i where step 3 is executed, the total time consumed is
of order

< < < < < < < < <A q S F A q A q SÝ Ý Ý Ýiy1 i 0 i i
i i i i

< < < <F SS q 2 S ,Ý i
i

< < < <because the execution of step 3 implies that A F S . Thus the total timei i
< < < <consumed by all steps of the algorithm is at most of order SS q Ý S si i

Ž .O l .
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